
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 705
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Indexed Map-Reduce Join Algorithm

Mohamed Helmy Khafagy
Computer Science Department

Fayoum University
Egypt

Mhk00@fayoum.edu.eg

Abstract— Map Reduce is used to handle and support massive data sets .rabidly increasing in data size, and big data are
imperative today to make an analysis of this data. Map-Reduce gets more helpful information by using two simple
functions map and reduce with load balancing, fault tolerance, and high scalability .the most important operation in the
analysis process is join. This paper explains new two-way join algorithm called Indexed Map Reduce Join Algorithm that
used Index in the large table to Decrease I/O and Shuffling that cause Best performance in Map Reduce Join. Our
experimental result shows that using Index-join algorithm has high performance than other algorithms while increasing the
data size from 100 million records to 500 million without memory overflow.

Index Terms— Algorithm, Big Data, Hadoop, Index, Join, Map Reduce, Performance

——————————  ——————————

1. INTRODUCTION

he most important issue in researches nowadays is
analyzing and processing massive data sets [1]. The map-

reduce based system is designed to process and analyze these
data sets to obtain more knowledge and useful information in
order to support industry and academia researches [1].

Map-reduce is considered as a programming model appears

since 2004 by Google [1]; it is used to analyze and help
heterogeneous datasets. It is becoming more common in order
to simplify the interface, deal with fault tolerance, load
balancing [2, 3] and high scalability.

Map-reduce [4] is considered as the simplest programming

in order to use two certain functions map function and reduce
function these two defined functions are written by the
programmer to obtain this task and everything such as dealing
with fault tolerance and load balancing that are done by the
framework by default. Each record of data that is assigned to
map task can be produced as a key value pair then this output
are sent to the reduce task to do the major operation assigned
by the programmer by gathering the values with the same key
to producing final output [4].

 Apache Hadoop [5] is considered as an open source

framework that was developed by Google. It is used to interact
with heterogeneous data, the graduate large number of nodes,
automatically dealing with node failures; it is used to
distribute data processing, and it is written in java.

Hadoop distributed file system (HDFS) is a file system that

is used by Hadoop to save file system Metadata and
application data independently that can append and search
data in distributed file system [6]. It has two independent
servers to store Metadata at name node and application data at
data node. It uses replication of data to reserve data rather
than using RAID. All file data are stored in more than one
node [7].

According to the speedy increase in data size we need to

accomplish join operation to find hidden pattern and valuable
information [8], also there is essential need to optimize the join
operation [9, 10, 11] but on multiple data set map-reduce has
some restrictions to perform join operations because map-
reduce used Network connection to send whole datasets
among nodes in the cluster That may cause performance
bottleneck [12].

Many researchers through 30 years in the database area,

they are using semi-join and hash tables to join operations on
massive data sets [12]. Though, map-reduce is designed to deal
with single large dataset as input in order to haven’t any data
structure and database design like indexes, filters or query
execution plan as in the database. In this paper, for the better
join performance in Hadoop we are using the index in the
large table to minimizing I/O in shuffling and map function.
We apply this index join techniques only for two data sets. We
list some types of join algorithms in map-reduce and then
compare our new algorithm with them.

The rest of this paper is ordered as follow: Section 2

T IJSER

http://www.ijser.org/
mailto:Mhk00@fayoum.edu.eg

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 706
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

characterizes some previously map-reduce join. Sections 3
discusses index join algorithm that is concerned with our
work. Section 4 we state our experimental results. In the end,
we round off and consider the conclusion and future work.

2. RELATED WORK

The two-ways join algorithms using map function at least
to do join operation like broadcast join and reduce side
join the two-ways join may using more than one phase
and using map function and reduce function as see in
Equation 1 . Two-way join algorithms that are used to join
two dataset R and L as in equation 1.

R (A, B L (B, C) (1)

2.1 Broadcast join
Broadcast join algorithm[13,14] is similar to memory join
but small data set must fit in the memory but not
completely it is called hash join because it's used hash
table .loaded one dataset into memory, streamed over
other dataset. We used BJ abbreviation for this algorithm.
Figure 1 shows pseudo-code for broadcast join [15].

Figure. 1 Show pseudo-code for broadcast join [15].

Broadcast join implementation:
If R fits into memory and R << S
Distribute R to all nodes
Map over S loads R in memory for each mapper and
hashed by join key
Look up join key in R For every tuple in S,
There are no reducers, unless for regrouping or resorting
tuples.
Broadcast join Decrease I/O time by avoiding shuffling
data and by avoiding using reduce phase. However, it is
Sensitive to data skew. The main problem in the broadcast
join is dealing with a small table and if the size of the table
more than memory size can cause memory overflow. We
show in Figure 2 the architecture of broadcast join

.

Figure 2 the architecture of broadcast join.

2.2 B. Reduce side join

Reduce side join has no restrictions on the size of your
datasets, it can join abundant data sets jointly at once as you
want and used to join massive large datasets that are being
joined by a foreign key[13]. Map function is ready to join
operation to eject the join key as intermediate key/value, and
map with both data sets to tag each record with a table name
and then outputs a list of tagged keys/ values pairs to see
where the record comes from. Hash partitioned function is
used to distribute, arrange and combine the output
(intermediate key/value) of the map function and distributes
them to reduce all records with the same join key and various
tags are fit to the same reducer and does the cross product to
this records to join results. Figure 3 presents a full phase for
reduce side join using Query 1 and Figure 4 Pseudocode for

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 707
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

reduce side join [13] we used the abbreviation RSJ for this
algorithm.

SELECT l_orderkey, o_shippriority,
FROM orders, lineitem
WHERE l_orderkey = o_orderkey
AND o_custkey IN [X]
AND o_orderdate > [Y]

Query 1

Figure. 3. Full task for reduce side join

Figure .4. Pseudo code for reduce side join [13]

Reduce side join is Simplest to implement. And Reduce side

join can use any datasets size with no restrictions. Also, it has
an extreme time-consuming in order to contain an additional
phase to transfer the data from one phase to another phase
over the network. Reduce-Side join technique may cause a
network bottleneck because of shuffling both datasets over the
network. And also it is Sensitive to the data skew

3. INDEX -JOIN MAP-REDUCE
Index Join build and use index in the large table to enhance

the performance of join operation as following:

First Map function prepares join operation to emit the join

key and index from the large table and at the same time
another map make a selection and projection for the second
table. Hash partitioned function is used to partition, merge the
output (intermediate key/value) of the map function and
distributes all to reduces. All records with the same join key
and different tag are fit to the same reducer and perform cross
product to this records to join results. In the final phase, there
is a map function complete missing data from a large table
using the index. Figure 5 shows a full phase for Index Join
using Query 1

For Example when we want to join Order Table (OID, CID, and
TYPE) with Customer Table (CID, NAME) using Join Key CID

1. First, when loading data to HDFS index generated and

stored in the Order Table.

2. Second, a map function runs on Order Table to make a

selection and projection for Join Key (CID) and Index. At
the same Time, another map function runs on Customer
Table.

3. Third, Hash partitioned function is used to partition,

merge the output of the map function and distributes all
to reduces. All records with the same join key CID fit to
the same reducer and perform cross product to this
records to join results include the index column.

4. Finally, Using Index in Order Table a map function run

on Order Table to complete the missing information
TYPE, OID

Figure 6 shows how to join between Order Table and
Customer Table.
Index Join implementation:
Create Index in R
Map over R---R (index, Join key) and map over S
Distribute R and s to all nodes using hash partition
Reduce- RxS
MAP OVER R(TYPE, OID)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 708
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 5 full phases for Index Join

Figure 6 join between Order Table and Customer Table.

Index join has no limitation on the size of your datasets,

it can join any size of data sets together at once by a foreign
key.it reduce I/O and Decreased by adding index on Large
table, so by using this index it can reducing I/O in shuffling
and cause enhance in total join time.

4. EXPERIMENTAL RESULTS

4.1 Hardware

We present experimental results of our implementation.
We have 3 cluster machines one of them master node
(name-node), and two other are slave node (data node).
Cluster configuration consists of Intel Core I5 2.4 GHz
processor, 4 GB memory for every node, 500 GB SATA disk

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 709
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

and operating system Ubuntu 13.14 Linux with Apache
hadoop release 1.2.1.

4.2 Dataset
We use TPC-H benchmark [16] dataset to evaluate our
implementation with original Hadoop. We use two table
customers and orders to join according to join key where
O_CUSTKEY= C_CUSTKEY
We apply three experimental results varying in data size:

1. Experiment 1: we use 100 million records in order table

joined by 200 million records in the customer table.
2. Experiment 2: we use 150 million records in order table

joined by 300 million records in the customer table.
3. Experiment 3: we use 200 million records in order table

joined by 400 million records in the customer table.
4. Experiment 4: we use 250 million records in order table

joined by 500 million records in the customer table.

4.3 Results
Table 1 show the Comparison result between broadcast

join - reduce side join and Index Join in different data size

Table 1 Comparison between broadcast join - reduce side

join and Index Join

Comparison
100
& 200
m

150 &300
million

200& 400
million

250& 500
million

broadcast
join 673

Memory
OverFlow

Memory
OverFlow

Memory
OverFlow

reduce
side join 801 1244 1540 2320

Index
Join 711 1066 1340 2018

Figure 7 show the Comparison result between broadcast
join - reduce side join and Index Join with 100 Million
Records in order table joined by 200 million records in
customer table.and the result show that broadcast join has
the best performance because that their join done in the
memory also the result of Index join is better than reduce

side join with the small difference between it and broadcast
join

Figure 7 100x200 million records

Figure 8 show the Comparison result between broadcast
join - reduce side join and Index Join with 150 Million
Records in order table joined by 300 million records in
customer table.and the result show that broadcast join
cause memory overflow then it cannot complete the join,
but Index join still has better performance rather than
reduce side join

Figure 8 150x300 million records

Figure 9 show the Comparison result between broadcast
join - reduce side join and Index Join with 200 Million
Records in order table joined by 400 million records in
customer table.and the result show that broadcast join
cause memory overflow then it cannot complete the join,
but Index join still has better performance rather than
reduce side join

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 710
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 9 200x400 million records

Figure 10 show the Comparison result between broadcast
join - reduce side join and Index Join with 250 Million
Records in order table joined by 500 million records in
customer table.and the result show that broadcast join
cause memory overflow then it cannot complete the join,
but Index join still has better performance rather than
reduce side join

Figure 10 250x500 million records

Figure 11 show that Index join can run with best
performance even with the increase of the size of dataset.

Figure 11 Comparison between join Algorithms in different

dataset size

5. CONCLUSION AND FUTURE WORK

This work show new proposed join algorithm Index join
that it has no limitation on the size of your datasets, it can
join any size of data sets together at once by a foreign key.it
reduce I/O and Decrease by adding index on Large table, so
by using this index it can reducing I/O in shuffling and
cause enhance in total join time. . We run new join
algorithms with various data size to see the performance
while increasing in data size. Our experimental result
shows that our algorithm used the index to get high
performance, and it is being the best one in running time
than two others and memory size not affect in cost.

In the future work, we want to implement the join

algorithms using several datasets benchmarks and
increasing number of nodes to show performance and used
hash semi-join algorithm idea and enhanced in this
algorithm to run multi-way join.

REFERENCES

[1] Dean, J., & Ghemawat Mapreduce: Simplified data
 Processing on large clusters. In OSDI: Proceedings of
the 6th symposium on operating systems design, San
Francisco, USA (pp. 137– 150) 2004.

[2] Ebada Sarhan, Atif Ghalwash,Mohamed
Khafagy ,Queue Weighting Load-Balancing Technique

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 711
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

for Database Replication in Dynamic Content Web Sites
",APPLIED COMPUTER SCIENCE (ACS'09) University
of Genova, Genova, Italy, 2009, Pages 50-55

[3] Ahmed M Wahdan Hesham, A. Hefny, Mohamed
Helmy Khafagy,” Comparative Study Load Balance
Algorithms for Map Reduce Environment”
International Journal of Applied Information
Systems,2014, Issues 7(11),pp 41-50.

[4] Kumar, A., et al. (2013). "Verification and Validation of
MapReduce Program Model for Parallel K-Means
algorithm on Hadoop Cluster." International Journal of
Computer Applications 72(8): 48-55.

[5] Stefan Richter, Jorge-Arnulfo Quian e-Ruiz, Stefan
 Schuh,Jens Dittrich: Towards Zero-Overhead Adaptive
 Indexing in Hadoop.http://infosys.cs.uni-saarland.de,
 rXiv:1212.3480v1 [cs.DB] 14 Dec 2012.

[6] Haytham Al Feel, Mohamed Khafagy, Search content
via Cloud Storage System. International Journal of
ComputerScience Issues (IJCSI)bVolume 8 Issue 6,
2011.

[7] E Sarhan, A Ghalwash, M Khafagy ,”Agent-based
replication for scaling back-end databases of dynamic
content web sites”, Proceedings of the 12th WSEAS
international conference on Computers,2008 pp 857-862

[8] Lee, T., et al. (2012). Join processing using Bloom filter
in MapReduce. Proceedings of the 2012 ACM Research
in Applied Computation Symposium, ACM.

[9] Mina Samir Shenouda, Mohamed Helmy Khafagy,
Samah Ahmed Senbel,” JOMR: Multi-join Optimizer
Technique to Enhance Map-Reduce Job”, The 9th
International Conference on INFOrmatics and Systems
(INFOS2014),2014 pp 80-86

[10] FR Sayed, M. H. Khafagy,” SQL TO Flink
Translator”,IJCSI International Journal of Computer
Science Issues 12 (1), 2015,169:174.

[11] Marwah N Abdullah, Mohamed H. Khafagy,” HOME:
HiveQL Optimization in Multi-Session Environment ”,
5th European Conference of Computer Science (ECCS
'14),2014, 80:89

[12] Zhang, C., et al. (2013). "Efficient processing distributed
joins with Bloom filter using MapReduce." Int J Grid
Distrib Comput 6(3): 43-58.

[13] Pigul, A.: ‘Comparative Study Parallel Join Algorithms
for MapReduce environment’2013

[14] VIKAS JADHAV1, J.A., SUNIL DORWANI2: ‘JOIN
ALGORITHMS USING MAPREDUCE: A SURVEY’,
International Conference on Electrical Engineering and
Computer Science, 21-April-2013

[15] Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita,
E.J., and Tian, Y.: ‘A comparison of join algorithms for
log processing in MapReduce’. Proc. Proceedings of the
2010 ACM SIGMOD International Conference on
Management of data 2010 pp. Pages

[16] www.tpc.org

IJSER

http://www.ijser.org/
http://dl.acm.org/citation.cfm?id=1513751
http://dl.acm.org/citation.cfm?id=1513751
http://dl.acm.org/citation.cfm?id=1513751
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HE7t4AkAAAAJ&citation_for_view=HE7t4AkAAAAJ:tOudhMTPpwUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HE7t4AkAAAAJ&citation_for_view=HE7t4AkAAAAJ:tOudhMTPpwUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HE7t4AkAAAAJ&citation_for_view=HE7t4AkAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HE7t4AkAAAAJ&citation_for_view=HE7t4AkAAAAJ:WF5omc3nYNoC

	1. Introduction
	2. Related work
	The two-ways join algorithms using map function at least to do join operation like broadcast join and reduce side join the two-ways join may using more than one phase and using map function and reduce function as see in Equation 1 . Two-way join algo...
	2.1 Broadcast join
	Broadcast join algorithm[13,14] is similar to memory join but small data set must fit in the memory but not completely it is called hash join because it's used hash table .loaded one dataset into memory, streamed over other dataset. We used BJ abbrevi...
	Figure. 1 Show pseudo-code for broadcast join [15].
	Broadcast join implementation:
	If R fits into memory and R << S
	Distribute R to all nodes
	Map over S loads R in memory for each mapper and hashed by join key
	Look up join key in R For every tuple in S,
	There are no reducers, unless for regrouping or resorting tuples.
	.
	Figure 2 the architecture of broadcast join.
	2.2 B. Reduce side join

	3. Index -join map-reduce
	4. Experimental Results
	4.1 Hardware
	4.2 Dataset
	4.3 Results

	5. Conclusion and future work

